1. 首页 > 手机游戏 >

高中重要物理学史表格版 高中物理重要的物理学史

高中课本中常见的物理学史有哪些

高考考物理学史,基本不会直接问你哪个人有什么贡献,一般会结合有些物理学史来考你相关应用。高中物理学史主要就是那些大科学家的贡献问题,比如法拉第发现电磁感应,提出电场线磁感线,奥斯特发现电流磁效应,你看看书,书上都有。高考考察物理学史,一般以物理学史为背景来考察,一般不直接考。

高中重要物理学史表格版 高中物理重要的物理学史高中重要物理学史表格版 高中物理重要的物理学史


高中重要物理学史表格版 高中物理重要的物理学史


谁能总结一下完整的高中物理学史实。

一.力学中的物理学史

1、前384年—前322年,古希腊杰出思想家亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。

2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了架观察天体的望远镜;次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。

3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。其最有影响的著作是《自然哲学的数学原理》。

4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6.67×11-11N·m2/kg2(微小形变放大思想)。

5、1905年爱因斯坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。即“宏观”、“低速”是牛顿运动定律的适用范围。

二.热学中的物理学史

1、1827年英国植物学家布朗:发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。

2、1661年英国物理学家玻意耳发现:一定质量的气体在温度不变时,它的压强与体积成反比( ,即为玻意耳定律。

3、1787年法国物理学家查理发现:一定质量的气体在体积不变时,它的压强与热力学温度成正比( )即为查理定律。

4、1802年法国物理学家盖·吕萨克发现:一定质量的气体在压强不变时,它的体积与热力学温度成正比( )即为盖·吕萨克定律。

三.电、磁学中的物理学史

1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。

2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。

3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的磁效应。

4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。

5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。

6、1864年英国物理学家麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。

7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。

四.光学、原子物理中的物理学史

1、历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。

2、1800年,英国物理学家赫谢尔发现线。线具有明显的热效应。应用:遥感和高空摄影。

3、1801年,英国物理学家托马斯·杨:通过“杨氏双缝干涉实验”观察到了光的干涉现象,证实了光的波动性。

4、1801年,德国物理学家里特发现紫外线。紫外线具有明显的化学作用、荧光效应。应用:杀菌、消毒、黑光灯灭害虫。

5、1818年,法国科学家泊松:观察到光的圆板衍射——泊松亮斑。

图1光电效应实验

6、1895年,德国物理学家伦琴:发现比紫外线频率还要高的电磁波——X射线(伦琴射线)。具有很强的穿透本领,能使荧光物质发出荧光,还能使照相底片感光。高速电子流射到任何固体上都能产生这种射线。

7、1896年,法国物理学家贝克勒尔:发现天然放射现象,说明原子核也有复杂的内部结构即原子核也是可分的。之后居里夫人于1898年7月发现放射性元素钋(Po)同年12月又发现了镭(Ra)。

8、1900年,德国物理学家普朗克:解释物体热辐射规律时提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。

图2 α粒子散射实验装置

9、1905年爱因斯坦:在德国物理学家赫兹首先发现“光电效应”实验(如图1)的基础上提出了“光子说”,成功地解释了光电效应规律。

10、1897年,英国物理学家汤姆生:利用阴极射线管发现了电子,说明原子可分、有复杂内部结构,并提出原子的枣糕模型。

图3 α粒子散射实验结果演示图

11、1909年,英国物理学家卢瑟福为了验证汤姆生提出的原子结构模型做了的“α粒子散射实验”。(如图2)

实验结果:(如图3)①绝大多数α粒子穿过金箔后,跟原来的运动方向偏离不多(平均2°一3°)②少数α粒子产生较大的偏转③极少数α粒子产生超过90°的大角度偏转,个别α粒子被弹回。据此卢瑟福提出了原子的核式结构模型,由实验结果估计原子核直径数量级为10 -15 m 。

显微镜

银箔

源氮气

氮气

图4 粒子轰击氮核装置

12、1909年-11年,英国物理学家卢瑟福:用α粒子轰击氮核,(如图4)次实现了原子核的人工转变,并发现了质子。 。

13、13年,美国物理学家密立根:测出元电荷的电量 ,即的“密立根油滴实验”。

14、1924年,法国物理学家德布罗意:预言了一切微观粒子包括电子、质子、和中子都具有波粒二象性。

15、1932年查德威克:在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。 。其用中子轰击石蜡打出了质子(如图5)。

Po

粒子

铍石蜡

质子

图5 粒子轰击铍实验

中子

16、1934年,约里奥·居里夫妇:用 粒子轰击铝箔时观察到正电子。反映方程 。可见,正电子是由磷30衰变发的。像磷30这种具有放射性的同位素称之为放射性同位素。放射性同位素的应用:机械探伤、消菌杀毒、作为示踪原子等。

17、1971年计量大会规定的7个基本单位:长度:米(m ),质量:千克(Kg),时间:秒(s),电流:安[培](A),热力学温度:开[尔文](K),物质的量:摩[尔](mol),发光强度:坎[德拉](cd)。

求关于物理学史的知识点

高中物理公式总结

物理定理,规律,公式,表格

粒子的运动(1)------直线运动

1)匀变速直线运动...... /> 1。平均速度V平= S / T(定义公式)2。有用的推论VT2-VO2 = 2AS

3。中间时刻的速度VT / 2 = V级=(VT +武)/ 2 4决赛中速度VT = VO +

5。中间的位置,速度Vs / 2 = [(VO 2 + VT2)/ 2] 1/2 6。位移s = V电平t = VOT + AT2 / 2 = VT /2吨

7。加速度A =(Vt的 - Vo级)/吨{Vo为正方向,和Vo是相同的方向(加速度),a> 0时,反向如果a <0}

。实验推论ΔS=Δs的连续相等的时间(T)内的位移AT2 {}

主要物理量及单位:初速度(旁白):米/秒,加速度(a):m/s2;速度(Vt):m / s的时间(t)秒(s)位移(s):m个(m);到家:米,速度单位换算:1米/秒=3.6公里每小时。

注意:

(1)的平均流速是一个向量;

(2)对象的速度,加速度是不一定大;

(3)=(Vt的-Vo级) /吨的措施,而不是确定的模式;

(4)其它相关内容:质量,位移和路程,参考系,时间和时间[看到的个卷P19] / S - T图,V - 吨图/速度和速率的瞬时速度看卷P24]。

2)自由下落

1。初始速度VO = 0 2。终端速度Vt = GT

3。下降高度h = GT2 / 2(计算)4 VO位置下来。推论VT2 = 2GH

注:

(2)= G = 9.8米/

(1)自由落体的匀加速直线运动,初速度为零遵循匀变速运动规律; S2≈10m/s2(在赤道附近的重力加速小,在高山上比平地的方向直降小)。抛体运动

(3)垂直位移s = VOT-GT2 / 2。终端速度Vt = VO-GT(G = 9.8m/s2≈10m/s2)

3。有用的推论VT2摄氧量=-2GS 4。上升的高度Hm = Vo2/2g(抛出点计算)

往返时间T = 2Vo /克(从抛出落回原来的位置时)

请注意: />(1)处理的全过程:向上为正方向匀减速直线运动,加速度为负;

(2)分段处理:向上为匀减速直线运动的自由落体,与对称;

(3)的上升和下落的过程中,对称性,如在同一个点的速度等值反向。

粒子的运动(2)----曲线运动,万有引力

1)平抛运动

1。水平方向,速度:VX = VO 2。垂直方向,速度:VY = GT

3。水平位移:X = VOT 4。垂直位移为:y = GT2 / 2

运动时间t =(2Y /克)1/2(通常表示为(2H / g)的1/2)

6。闭速度Vt =(VX2 + VY2)1/2 = [VO2 +(GT)2] 1/2

合闸速度方向和水平角度β:tgβ= Vy速度/ Vx的= gt/V0

7。总排量:S =(X2 + Y2)1/2,

位移方向与水平面夹角α:tgα= Y / X = GT / 2Vo

8。水平加速度:AX = 0,垂直加速度:AY = G

注:

(1)卧式抛体运动,匀变速曲线运动,加速度g,通常可以看作是一个合成的自由落体匀速直线运动的水平方向和垂直方向上;

(2)掉落高度h(y)的运动决定水平抛出速度无关;

(3)θ和β之间的关系tgβ=2tgα;

(4)的时间t是解决关键的平坦的抛物线的运动,(5)的曲线运动的对象必须速度和力的方向的加速度,当遭受曲线运动(加速度)的方向是不相同的直线,对象指南。

2)匀速圆周运动

线速度V = S / T =2πR/ T 2。角速度ω=Φ/吨=2π/ T =2πF

向心加速度= V2 / R =ω2r=(2π/ T)2R 4。同心F心= MV2 / R =mω2r= MR(2π/ T)2 =mωv= F一起

5周期和频率:T = 1 / F 6。角速度和线速度的关系:V =ωR

角速度和速度ω=2πN(相同的频率和速度的意义在这里)

8主要物理量和单位:电弧长度(s): M(M),角度(Φ):弧度(RAD),频率(F):他(HZ);周期(T):秒(s)转速(n):R / S半径? :米(m)的线性速度(V):m / s的角速度(ω):为rad / s;心加速度:m/s2之间。

注意:

(1)向心力可以由一个特定的力的提供,还可以提供由力还可以提供由分力的方向的方向总是垂直于速度,指向圆心;

(2)做匀速圆周运动的物体,向心力等于力,向心力只改变速度的方向,不改变大小的速度,使对象的动能保持不变,和向心力,没有做的工作,但的势头正在发生变化。

)引力

1。开普勒第三定律:T2/R3 = K(=4π2/GM){R:轨道半径,T:周期,K:常数(做了行星的质量无关。取决于质量的核心对象)}

2。万有引力定律:F = Gm1m2/r2(G = 6.67×10-11N?m2/kg2方向在它们的连线)

3。天体由于重力和加速度的比重:GMm/R2 =毫克; G = GM/R2 {R:天体半径(m),M:天体质量(kg)}

4颗卫星的轨道速度,角速度,周期:V =(GM / R)1/2;ω=(GM/r3)1/2; T =2π(r3/GM)的1/2 {M:中心天体的质量}

(第二3)宇宙速度V1 =(G地方R地)1/2 =(GM / R接地)1/2 =7.9公里/秒; V2 =11.2公里/秒; V3 =16.7公里/秒

地球同步轨道卫星GMM /(R + h)的2 =m4π2(R至+ H)/ T2 {≈36000公里从地球的表面河,h:高度:地球的半径}

注: BR />(1)天体运动所需的向心力是由引力,F = F 000;

(2)应用万有引力定律可估算天体的质量密度;

(3 )对地静止卫星在赤道上空运行,运行周期与地球的自转周期是相同的;

(4)卫星轨道半径小时,势能变小,较大的动能,速度,更大的周期较小(与3反); >(5)地球卫星环绕速度和最小的传输速度是7.9公里/ s的。

力(常见的力,力的合成与分解)

1)常见的力

1。重力G =毫克(直降方向,G = 9.8m/s2≈10m/s2,点的重心,适用于地球表面附近)

胡克定律F = KX {方向沿着回收变形方向,K:刚性系数(N / m的),X:变形(米)}

3。滑动摩擦力F =μFN{物体的运动方向相反μ:摩擦系数,FN:正压力(N)}

静摩擦力0≤F静态≤FM(相对运动方向发展的趋势和对象相反,fm为静摩擦力)

5引力F = Gm1m2/r2(G = 6.67×10-11N?m2/kg2,其连接的方向) 6。电场力F = kQ1Q2/r2(K = 9.0×109N?m2/C2,其连接的方向)

7。电场力F =式(E:电场强度N / C,问:电力,正电荷,在电场力的磁场方向相同)

8。安培力F =BILsinθ(θ为B和L的角度,当L⊥B:F = BIL,B / / L时:F = 0)

9。洛伦兹力f =qVBsinθ(θB和V,当V⊥B:F = QVB,V / /:f = 0时)

注:

(1)的刚度系数k的角度确定由弹簧本身;

(2)的摩擦系数μ和压力的大小和接触面积的大小,由接触表面的表面状态的决定的材料性质;

(3)调频稍μFN,通常被视为FM≈μFN;

(4)其它相关内容:静摩擦力(大小,方向)卷P8];

(5)物理量符号及单位B:磁感应强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(米/秒),Q:带电粒子(带电体)电源(C);

( 6)安培力的洛伦兹力的方向是用左手判断。组合和分解

2)力。同一条直线上力的合成:F = F1 + F2,反向:F = F1-F2(F1> F2)

F. =(F12 + F22 +2角度力的合成:F1F2cosα )1/2(余弦)F1⊥F2的法律:F =(F12 + F22)1/2

3。在一起的Fx的=Fcosβ,Fy的=Fsinβ,(β连同与x轴的正交tgβ= Fy的尺寸范围内:| F1-F2 |≤F≤| F1 + F2 |

4。力分解之间的角度/ FX)

注:

(1)力(矢量)的合成和分解遵循平行四边形;

(2)联合部队的受力零件之间的关系是等价的替代品可用合力替代建立分力在一起,反之亦然;

(3)在除了式方法中也可以被用来作为一个图方法要选择缩放严格映射;

F1和F2(4)的值是恒定的,较大的角度(α角)的F1和F2,迫使越小;

的合成(5)的同一条直线上的力,可以沿一条直线的正方向,用符号表示的方向力,从而简化了代数运算。

动能(运动和力)

1。牛顿运动定律(惯性定律):物体具有惯性始终保持匀速直线运动或静止状态,直到有外力迫使它改变这三个至今

牛顿第二运动定律:F合共= mA或A = F合/ MA {与合作的总的外部决定,在外力的方向}

3。牛顿第三运动定律:F =-F'{负号表示方向相反,F,F'各自在对方,平衡和力反应力,实际应用:反冲运动}

共通点力平衡F一起= 0,推广{正交分解法,三所收集的原则}

5超重:FN> G,失重:FN 6。牛顿运动规律的适用条件:适用于适用于宏观物体低速运动问题,不适用于高速加工的问题并不适用于微观粒子[请参阅P67卷]

注意:平衡状态是指该对象是在静止或匀速直线状态,或匀速转动。

振动与波(机械振动和机械振动的传播)

简谐准F = KX {F:恢复力,K:比例系数,x:位移,负号表示F的方向所述始终扭转}

2。摆周期T =2π(L / G)1/2 {L:摆长度(m)G:的局部加速度的重力值既定的条件下:摆角θ> R}

3 。受迫振动频率特性:F = F驱动力

4。共振条件:F驱动力= F固体,A =值,共振预防卷P175]

机械波,横波和纵波卷II P2]

波速度V = S / T =λF =λ/ T {波的传播和应用[见一个周期向前传播的波长,波速度的大小是由介质本身}

声波速度(在空气中)0°C:332米/秒; 20°C:344米/ S,30°C:349米/秒;(声波是纵波)

8波明显的衍射(波绕过障碍物或孔继续传播)条件:障碍物的大小孔比光的波长,或相不大

9。波干扰的情况下:相同的两波的频率(相恒定的幅度相似,相同的振动方向)

10多普勒效应:由于波源和观测者之间的相互运动,产生不同的波源发射频率和接收频率{彼此接近,接收频率的增加,反之亦然,减少[见第II卷P21]}

注意:

(1)的固有频率和振幅的对象,不管驱动力的频率,取决于振动系统本身;

(2)加强区峰和波峰或波谷和波谷满足在薄弱区的波峰和波谷满足;

(3 )波传播的振动,介质本身波不发生迁移的方式来传递能量;

(4)干涉和衍射的一些波特

(5)振动图像和波动图像;

(六)其他有关:及其应用[见第二卷P22] /振动能量转换[,卷P173]。

六,冲量和动量(强制的变化势头对象)

势头:p = mv的电话号码:动量(千克/秒),M:质量(kg),V:速度(m /秒),同样的方向和速度方向}

冲动:I = FT {I:脉冲(N),F:恒力(N),T:力的作用时间(S),方向是确定的F}

动量定理:I =ΔPFT = MVT-MVO {△P:动量变化ΔP= MVT-MVO,是向量}

5。动量守恒定律:P前= p或p =''也可以是m1v1 + m2v2 = m1v1'+ m2v2'

6。弹性碰撞:ΔP= 0;ΔEk= 0 {系统的动量和动能守恒}

7。的非弹性碰撞在Δp= 0,0 <ΔEK<ΔEKm{ΔEK:动能的损失,EKM:损失的动能}

完全非弹性碰撞ΔP= 0;ΔEKΔEKm{成一整体一起}

触摸物体M1 v1的速度和M2的弹性被触摸的开头处的静止物体:

v1的'=(M1-M2)v1的/(M1 +平方米)v2的'= 2m1v1 /(M1 + M2)

10。被感动的弹性推论-----品质的开关速度(动能守恒,动量守恒)

11。米的水平速度vo静止的长木块放置在水平光滑的曲面M,在他们一起移动和嵌入式时的机械能损失

损失= mvo2/2-(M + M),VT2 / 2 = FS相对{VT的相对长条的木板为了一个共同的速度相对位移,电话号码:电阻,S}

注:

(1)碰撞的心也被称为是触摸时,其连接的速度的方向;

(2)以外的上述表达式中的向量作比动能,在一维理想的正方向的情况下,成代数运算;

(3)系统保护的势件:总的外力为零或系统的外力,系统动量守恒(碰撞问题,爆炸问题,反冲问题);

(4)碰撞过程中(在很短的时间内,碰撞的物体构成的系统)时,动量守恒定律,核衰变的动量守恒;

(5)爆炸过程中动量守恒,化学能转化为动能,动能增加;(六)其他有关内容:反冲,火箭和空间技术的发展和宇宙航行[见第二卷P128]。

七,功和能(电源的能量转换是衡量)

功能:W =Fscosα(定义){W:功能(J),F:恒力(N),S:位移(M)之间的夹角,α:F,S}

重力作用:WAB = mghab {m:质量的对象,G = 9.8m/s2≈10m/s2哈:A和B的高度(HAB = HA-HB)}

电场力作用:WAB = qUab【q:用电量(C),UAB:A和B之间的电势(V),UAB =ΦA,ΦB}

> 4。电力:W = UIT(普遍的){U:电压(V),I:电流(A)T:通电时间(s)}

功率:P = W / T(定义){P:功率[瓦(W),W:时间做反应(J),T:长效使用时间(s)}

6。车辆牵引功率:P = FV,P水平= FV {P:瞬时功率P水平:平均功耗}

汽车启动的恒定功率,恒定的加速度启的行驶速度(VMAX = P额/ F )

8。电机功率:P = UI(普遍的){U:电路电压(V),I:短路电流(A)}

9。焦耳定律:Q = I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),T:通电时间(s)}

10。纯电阻电路I = U / R,P = UI = U2 / R = I2R,Q = W = UIT = U2T / R:= I2Rt

11。动能:EK = MV 2/2 {EK:动能(J),M:对象的质量(kg),V:物体瞬时速度(米/秒)}

12。重力势能:EP =麻省总医院{EP:重力势能(J),G:由于重力,H:垂直高度(m)(从零势能面达)}

13电加速度势能:EA =qφA{EA:带电体在点A电势能(J),Q:用电量(C),φA:A点的电势(V)(从零势能面自)} /> 14。动能定理(对象做积极的工作,一个物体的动能):

W的CO = mvt2/2-mvo2/2或W一起ΔEK

{W在一起:外部势力的对象做总功率ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15。机械能守恒定律:ΔE= 0或EK1 + EP1 = EK2 + EP2也可以是mv12 / 2 + mgh1 = mv22的WG = / 2 + MgH2的

16。在重力作用的重力势能(重力等于物体的重力势能增加负)增加率

注:

(1)功率的大小表示快和慢作用署的数字表示多少能源转换;

(2)O0≤α<90°做积极的工作; 90O <α≤180°做负功;α= 90°不工作(力的方向的位移(速度)方向垂直时,力不采取行动, );

(3)重力(弹力,电场强度,分子间作用力)做了积极的工作和重力(弹性,电,分子)可能减少

(4)重力作用电场力做功的路径(见2,3方程)(5)机械能守恒成立的条件:没有工作的其他部队,但比重(有弹性),动能和势能之间的转换(6)单位换算:1千瓦时(度)= 3.6 ×106J,1EV = 1.60×10-19J (7)弹簧弹性势能E = KX2 / 2,相关的刚度系数和形变量。

8动力学理论,法律节约能源

1。阿伏加德罗常数NA = 6.02×1023/mol的分子直径的数量级10-10米

膜法测得的分子直径e= V / S {V:单分子膜体积(m3),S:膜的表面面积(m)2}

动力学理论内容:由大量分子组成的材料,大量的分子做无规则热运动的分子之间存在的相互作用力。

4。分子间的引力斥力(1)R

(2),F分子力= 0,E分子势能能量=艾敏(最小)

(3)R> R0,F引> F谴责的F分子力表现为引力

(4)R> 10R0 f引= F谴责≈0 F分子力≈0,E分子势能≈0

定律,热力学W + Q =ΔU{(做功和传热都改变对象的方式可以是等效的效果), W:外部对象做定期的功能(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到类永动机不能创建[见第二卷P40]} BR /> 6。配方的第二定律热力学

克氏:这是不可能的,让热量传递的身体从低到高温物体,而不引起其他变化(热传导的方向);

开尔文声明:不可能从单一热源和它的所有吸收热量是用来做什么工作,而不引起其他变化(机械能,内能转化的方向),第二类是涉及永动机不能创建[见第二卷的P44]}

热力学第三定律:热力学不能达到零宇宙的温度下限:-273.15摄氏度(热力学零度)}

注意:

(2)温度是分子的平均动能的标志;

3)分子间的引力和斥力同时存在,分子之间的距离,减少排斥远引力下降的速度比

(4)分子的力量做积极的工作,分子势能减小在r0 F引= F剂分子势能最小;

(5)气体膨胀,外部的气体做负工件W 0;吸收热量,Q> 0

(6的对象)的内部可以

(7)r0是分子的对象的所有分子的动能和分子势能的总和为零的理想气体的分子间力和分子势能是零;平衡状态,分子间的距离;

(8):可以转化和给定的常数法[见第二卷P41] /能源的开发和利用,以及环境保护[见第二卷P47] /对象内分子的动能的分子势能[见第II卷P47]。

9,气体

1的性质。气体的状态参数:

温度:宏观层面上,一个物体的冷热程度;微观物体内部分子无标志的强度的规则运动之间的关系热力学温度,摄氏温度:T = T +273 {T:热力学温度(K),T:摄氏温度(°C)}

体积V:气体分子占据的空间,单位换算:1立方米= 103L = 106毫升的

压力p:每单位面积的,和一个大的气体分子数频繁击中了墙壁,并产生一个连续的,均匀的压力和标准大气压的压力:1大气压= 1.013×105Pa = 76cmHg(1Pa的1N/m2) 2。气体分子运动的特点:大的分子之间的距,除了碰撞的瞬间,是弱的相互作用,伟大的分子的流动性

3。理想气体状态方程:p1V1/T1 p2V2 / T2 {PV / T =常数,T为热力学温度(K)}

注:

(1)理想气体的内能无关做的理想气体,温度的材料的量的体积; >(2)的公式成立的条件是一定的质量的理想气体,使用公式要注意的温度的单位,吨是摄氏温度(°C),以及T为热力学温度(K)。

10,电场

1。两种电荷,电荷守恒定律,基本费用:(E = 1.60×10-19C);带电体的电荷量相等的电荷的整数倍

2。库仑定律:F = kQ1Q2/r2(真空){F:点电荷之间的力(N),K:静电常数k = 9.0×109N? m2/C2,Q1 Q2:什么两个带电的电力消费(C),距离(m)R:两个收费点,他们的连接,作用力与反作用力的方向,相同的电荷排斥,异种电荷相互吸引对方}

3的电场强度:E = F / q(下定义,公式){E:电场强度(N / C),是矢量(电场),Q叠加的原则:测试费的电力(C)}

4。真空点(源)收取的电场E = kQ/r2 {R:源电荷的距离(米)的位置,Q:源电荷的电量}

均匀电场的场强E = UAB / D {UAB电压(V):AB两点之间,D:AB两点在场强方向的距离(米)}

6。电场力:F = QE {F:电场力(N),问:电力的充电电池(C),E:电场强度(N / C)}

7。电势和电势:UAB =φAφB,UAB = WAB / Q =ΔEAB/ Q

8。电场力做功:WAB = qUAB = EQD {WAB:带电体由A到B时电场力作用(J),Q:用电量(C),UAB:电场中两点之间的电势B(V)(电场力做功路径无关),E:均匀的电场强度,D:沿磁场方向的两个点的距离(M)}

9。电势能:EA =qφA{EA:带电体在A,Q点的电势能(J):电力消费(C),φA:A点的电势(V)}

/> 10电势变化ΔEAB的EB-EA {带电体在电场中从A到B位置的电势}

11点。电场力做功电位能量变化ΔEAB=-WAB =-qUAB(增量电势能等于负的电场力做功值)

12。电容C = Q / U(){定义的公式,其计算公式C:电容(F),Q:电荷(C),U:电压(双极板的电势)(V)}

13。平行板电容器的电容C =εS/4πkd(S:两块板之间的垂直距离的面积,d:两块板,ω:介电常数)

通用电容器[见第II卷P111]

14。加速的带电粒子在电场(武= 0):W =ΔEK或曲= mVt2 / 2 Vt的=(2QU /米)1/2

15带电粒子沿垂直方向的电场为了加快武成偏转均匀电场(而不考虑重力的情况下)的

平面垂直于电场的方向:匀速直线运动L = VOT(在平行板时,与等量异种电荷:E = U / D)

投掷运动平行电场方向:初速度为零匀加速直线运动D = AT2 / 2,A = F / M = QE /米

注:

(1)两个完全相同的带电金属球接触,的电力分布规律:原带异种电荷的和拆分后,原来的带相同电荷,总均分;

(2)的电场线从正电荷偏离结束于一个负电荷,电场线不相交,磁场方向的切线方向,在字段中的强电场线密度,越来越低的电场线的电位降低垂直于电场线和等势线;

常见的电场的电场线记忆[图(3)的分布[第II卷P98] (4)的电场强度(矢量)和潜在的(标量)由电场本身决定的电场力和电势能的积极和消极的多少和电源带电荷的带电体; (5)中的静电平衡导体是一个等电位体,其表面是一个等电位表面,和附近的表面上的外导体的电场线垂直于导体表面,导体总磁场强度为零,没有净电荷内部的导体,净电荷只分布在导体的外表面;

(6)电容器单元转换:1F =106μF= 1012PF;

(7)电子伏特(eV)是一个单位的能源,1EV = 1.60×10-19J;

(8)其它相关内容:静电屏蔽[见第二卷P101 / CRT示波器及其应用[见第二卷P114的势能面[看第二卷P105]。

11,恒定电流

1电流强度:I = Q / T {I:电流强度(A),Q:在时间t通过导线横载体表面的力量(C),t:时间(S)}

2欧姆定律:I = U / R {I:导体的电流强度(A),U:导体两端的电压(V),R:导体电阻(Ω)}

3。电阻,电阻定律:R =ρL/ S {ρ:电阻率(Ω·米)L:长度(m)的导体,S:导体截面积(平方米)} 4。关闭电欧姆定律:I = E /(R + R),或E = IR + IR也可以是E = U-内+ U外

{I:电路总电流(A),E:电源电动势(V),R:外电路电阻(Ω),R:电源内部电阻(Ω)}

5。电力和电力:W = UIT,P = UI {W:电力(J),U:电压(V),I:电流(A),T:时间(s),P:电功率(W )}

6焦耳定律:Q = I2Rt {Q:电热(J),I:电流(A)通过的导体,R,T的导体的电阻值(Ω):通电时间(S) ,}

7。纯电阻电路:由于I = U / R和W = Q,W = Q = UIT = I2Rt = U2T / R

电源的饷总的电源输出功率,电源效率:P总= IE浏览器,P = IU,η= P / P的总{I:电路的总电流(A),E:电源电动势(V),U:的路侧电压(V)电源效率,η:}

电路串联/并联电路(P,U和R串联成比例)的并联电路(P,I和R是成反比)的

电阻关系(相同的字符串,和反)R字符串= R1 + R2 + R3 + 1 / R = 1/R1 +1 / R2 +1 / R3 +

电流关系I = I1 = I2 = I3的I = I1 + I2 + I3 +的

电压关系U总= U1 + U2 + U3 + U总= U1 = U2 = U3

配电P总= P1 + P2 + P3 + P总= P1 + P2 + P3 +

您好,1,括号中,插入适当的量词。

(A)的朋友(密封)通信(块)巨石

一个好东西(树)松(件)棉

2,填空(句)。

我的一位朋友是一个迫切需要一件外套,两个朋友知道哪一个(尽快自己的老棉花送到避免暴露在寒冷的一个朋友)到另一个(只发送一个信中说一堆好听的话,信中还表示:“我只有一个外套来穿,所以我们来!”)

3,问:

“我有一个比狐狸是更珍贵的裘皮大衣外套。

(1)“有价值的”是什么意思?有价值的外套“哪一个?

“宝贵”的含义:是指珍贵,珍贵的贵重物品

“外套”是关是朋友送他的旧大衣

(2)为什么我说老夹克新的狐皮大衣,更有价值吗?

接收,棉花在他最需要的时间,即使它是一个古老的,但甚至比温暖

很高兴为你解答,满意请采纳

高中物理学史主要集中在课本的插图内容中,看到一个插图你就看照片上的人是谁,做了哪方面的贡献,按时间排序就是一部精简的学史了。

百度文库利多的是,不论是高中的还是初中的,还是大学的都有的,朋友。

高中物理目录大全

人教版高中物理知识点有匀变速直线运动的速度与时间的关系、用牛顿运动定律解决问题、太阳与行星间的引力、探究功与速度变化的关系、验证机械能守恒定律等。下面给大家分享一些关于高中物理目录大全,希望对大家有所帮助。

高中物理必修一目录

章、运动的描述

质点、参考系和坐标系

时间和位移

运动快慢的描述──速度

实验:用打点计时器测速度

速度变化快慢的描述──加速度

第二章、匀变速直线运动的研究

实验:探究小车速度随时间变化的规律

匀变速直线运动的速度与时间的关系

匀变速直线运动的位移与时间的关系

匀变速直线运动的速度与位移的关系

自由落体运动

伽利略对自由落体运动的研究

第三章、相互作用

重力、基本相互作用

弹力

摩擦力

力的合成

力的分解

第四章、牛顿运动定律

牛顿定律

实验:探究加速度与力、质量的关系

牛顿第二定律

力学单位制

牛顿第三定律

用牛顿运动定律解决问题(一)

用牛顿运动定律解决问题(二)

物理必修二目录

第五章、曲线运动

曲线运动

平抛运动

实验:研究平抛运动

圆周运动

向心加速度

向心力

生活中的圆周运动

第六章、万有引力与航天

行星的运动

太阳与行星间的引力

万有引力定律

万有引力理论的成就

宇宙航行

经典力学的局限性

第七章、机械能守恒定律

追寻守恒量——能量

功功率

重力势能

探究弹性势能的表达式

实验:探究功与速度变化的关系

动能和动能定理

机械能守恒定律

实验:验证机械能守恒定律

能量守恒定律与能源

高中选修3-1目录

章、静电场

1、电荷及其守恒定律

2、库仑定律

3、电场强度

4、电势能和电势

5、电势

6、电势与电场强度的关系

7、静电现象的应用

8、电容器的电容

9、带电粒子在电场中的运动

第二章、恒定电流

1、电源和电流

2、电动势

3、欧姆定律

4、串联电路和并联电路

5、焦耳定律

6、导体的电阻

7、闭合电路的欧姆定律

8、多用电表的原理

9、实验:练习使用多用电表

10、实验:测定电池的电动势和内阻

11、简单的逻辑电路

第三章、磁场

1、磁现象和磁场

2、磁感应强度

3、几种常见的磁场

4、通电导线和磁场中受到的力

5、运动电荷在磁场中受到的力

6、带电粒子在匀强磁场中的运动

物理选修3-2目录

第四章、电磁感应

1、划时代的发现

2、探究感应电流的产生条件

3、楞次定律

4、法拉第电磁感应定律

5、电磁感应现象的两类情况

6、互感和自感

7、涡流、电磁阻尼和电磁驱动

第五章、交变电流

1、交变电流

2、描述交变电流的物理量

3、电感和电容对交变电流的影响

4、变压器

5、电能的输送

第六章、传感器

1、传感器及其工作原理

2、传感器的应用

3、实验:传感器的应用

高中物理3-3目录

第七章、分子动理论

1、物体是由大量分子组成的

2、分子的热运动

3、分子间的作用力

4、温度和温标

5、内能

第八章、气体

1、气体的等温变化

2、气体的等容变化和等压变化

3、理想气体的状态方程

4、气体热现象的微观意义

第九章、固体、液体和物态变化

1、固体

2、液体

3、饱和汽与饱和汽压

4、物态变化中的能量交换

第十章、热力学定律

1、功和内能

2、热和内能

3、热力学定律、能量守恒定律

4、热力学第二定律

5、热力学第二定律的微观解释

6、能源和可持续发展

物理选修3-4目录

第十一章、机械振动

1、简谐运动

2、简谐运动的描述

3、简谐运动的回复力和能量

4、单摆

5、外力作用下的振动

第十二章、机械波

1、波的形成和传播

2、波的图象

3、波长、频率和波速

4、波的衍射和干涉

5、多普勒效应

6、惠更斯原理

第十三章、光

1、光的反射和折射

2、全反射

3、光的干涉

4、实验:用双缝干涉测量光的波长

5、光的衍射

6、光的偏振

7、光的颜色、色散

8、激光

第十四章、电磁波

1、电磁波的发现

2、电磁振荡

3、电磁波的发射和接收

4、电磁波与信息化

5、电磁波谱

第十五章、相对论

1、相对论的诞生

2、时间和空间的相对性

3、狭义相对论的其他结论

4、广义相对论

高中物理选修3-4目录

第十六章、动量守恒定律

1、实验:探究碰撞中的不变量

2、动量和动量定理

3、动量守恒定律

4、碰撞

5、反冲运动、火箭

第十七章、波粒二象性

1、能量量子化

2、光的粒子性

3、粒子的波动性

4、概率波

5、不确定性关系

第十八章、原子结构

1、电子的发现

2、原子的核式结构模型

3、氢原子光谱

4、玻尔的原子模型

第十九章、原子核

1、原子核的组成

2、放射性元素的衰变

3、探测射线的 方法

4、放射性的应用与防护

5、核力与结合能

6、重核的裂变

7、核聚变

8、粒子和宇宙

高中物理目录大全相关 文章 :

★ 2019年高中物理知识点整理大全

★ 高中物理知识点大全

★ 高中物理公式大全一览表

★ 高中物理考点整理归纳

★ 高中物理知识点总结大全

★ 高中物理基础知识大全

★ 高一物理知识点笔记汇总

★ 高中物理知识考点整理

★ 高中物理知识点汇总基础归纳

★ 高中物理学史汇总

高中物理学史都有哪些

高中物理难,但一直以来都是高考拿分的关键,你是否会有学习物理倍感压力,无从下手的苦恼,那么如何学好物理,怎么做到高考物理不丢基础分呢,接下来大家可以看看我整理的高中最全物理学史,轻松学好物理。

1.力学

1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;

3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有 其它 原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)

6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-设-数学推理的 方法 ,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

7、人们根据日常的观察和 经验 ,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家提出了“日心说”,大胆反驳地心说。

8、17世纪,德国天文学家开普勒提出开普勒三大定律;

9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

11、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是火箭,我国已成为掌握载人航天技术的第三个。

12、1957年10月,发射颗人造地球卫星;1961年4月,世界艘载人宇宙飞船“东方1号”带着尤里加加林次踏入太空。

13、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

14、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。

2.电磁学

13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。

14、1752年,在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

16、13年,美国物理学家密立根通过油滴实验测定了元电荷e电荷量,获得诺贝尔奖。

17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

18、11年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

19、19世纪,焦耳和楞次先后各自发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。

20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流说;并 总结 出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。

24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。

25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。

26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。

27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。

28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。

3.热学

29、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。

30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹确定能量守恒定律。

31、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。

32、1848年开尔文提出热力学温标,指出零度是温度的下限。指出零度(-273.15℃)是温度的下限。T=t+273.15K

热力学第三定律:热力学零度不可达到。

4.波动学

33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。

34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。

35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。【相互接近,f增大;相互远离,f减少】

36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波

37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。

38、1894年,意大利马可尼和俄国波波夫分别发明了电报,揭开电通信的新篇章。

39、1800年,英国物理学家赫歇耳发现线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上张X射线的人体照片。

5.光学

40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。

41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。

42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。

43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波

44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式。

46.公元前468-前376,我国的墨翟及其在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。

47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)

48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。

6.相对论

49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);

50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子

53、激光——被誉为20世纪的“世纪之光”;

54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)

56、13年,丹麦物理学家玻尔提出了自己的原子结构说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;

58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高分辨能力,质子显微镜的分辨本能更高。

7.原子物理

59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。

60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。

61、13年,美国物理学家密立根通过油滴实验测定了元电荷e电荷量,获得诺贝尔奖。

62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

63、1909-11年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。

19年,卢瑟福用α粒子轰击氮核,次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。

64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

65、13年,丹麦物理学家波尔得出氢原子能级表达式;

66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。

67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。

68、19年,卢瑟福用α粒子轰击氮核,次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。

69、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现正电子和人工放射性同位素。

71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击核时,核发生裂变。1942年,在费米、西拉德等人下,美国建成个裂变反应堆(由浓缩棒、控制棒、减速剂、水泥防护层等组成)。

72、1952年美国爆炸了世界上颗(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

73、1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息